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Content vs Context Privacy
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Domain-specific techniques exist
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Onion Routing

• Onion routing provides 
source/destination privacy over the 
internet

• Obscures path messages take with 
multiple layers of encryption

• Threat model: Adversaries at 
(potentially multiple) points in the 
network and can monitor 
communications
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Wireless Sensor Networks

• Large networks of devices with:

• Low power – Two AA batteries to last 
multiple years

• Low resources – 10s MHz CPU / 10s KiB RAM 
/ 100s KiB ROM

• Potentially no stable storage
• Various sensors / actuators
• Low data rate communications – 250 kbps

• Useful when access to infrastructure is limited 
or costly
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Source Location Privacy

• Messages are routed from a 
valuable asset to a base station

• Messages are encrypted

• Context information – the 
direction from which a message is 
received – allows locating the 
source

• Assume: Base station’s location is 
known by adversary
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Existing Techniques – Fake Sources

• Fake sources generate fake 
messages

• Fake messages indistinguishable 
from normal messages

• Lure the adversary in a different 
direction to the real source
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Many other context privacy threats

• Connected Vehicles – facilitating 
tracking and potentially 
unwanted pattern of life analysis

• Mouse movements – used to 
predict demographics of users
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There is a need for context privacy in 
new domains
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Example: Water Treatment Plant

• Adversary will observe the plant to better 
understand how to attack it

• Obscuring the activities taken by the plant reduce 
the ability of the adversary to attack it

• Hide causal link between actions

• Wireless PLC controls release of chlorine to kill 
bacteria in water

• Adversary can learn that the wireless signal leads 
to chlorine release

• Change actions to obscure this cause-effect
10



Example: Drone Surveillance

• Autonomous drones used to perform 
surveillance of an area (e.g., farmland)

• Where a drone is and when it performs 
surveillance is valuable information

• Indicates areas of interest where attacks 
should be focused

• Add redundant surveillance to obscure 
areas of interest
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Example: Home Appliances

• Resources consumed in home can reveal 
important information

• Are you home?
• What devices do you own?
• When do you use them?

• Perturb their activity to obscure this

• Move the threat actor to your smart meter

• Existing: Use energy harvesting and storage to 
obscure activity
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Developing context privacy techniques 
for novel situations is slow
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Generalised Context Privacy

• We have solutions to many domain-specific problems

• They are not easily translatable to new systems

• Time is needed to develop solutions to novel systems

To improve:

• Develop general context privacy solutions to an 
arbitrary system once

• Develop domain-specific translators as needed when 
a new context privacy threat is identified
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Generalised Context Privacy: Aims

1. How to quantify information loss from an arbitrary cyber-physical 
system?

2. How can the sequence of actions have controls applied to reduce 
information loss?

1. While maintaining system availability

2. While minimising the cost of the controls

3. How can the system be changed such that it performs actions with a 
bounded information loss?
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Goal: Adversary is directly observing the system to learn information about it
• Aims of the system
• Approaches it is taking to achieve those aims
• Detect changes in behaviour that could be useful signals to launch other attacks

Capabilities: Adversary is passive (i.e., does not interact with the system)

Assumption: Adversary perfectly makes observations
• All states / actions of a system are correctly observed
• None are omitted

Assumption: This is a new system that has not been previously observed

• Previously deployed systems have already revealed information

Threat Model
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Approaches to reduce privacy loss

Typically three categories:

1. Make the sensitive action commonplace

2. Introduce noise to the actions the system takes / states the system is in

3. Limit the observability of the system to the adversary
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Quantifying Context Privacy
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Brief Information Theory Refresher

• Entropy (rv. X)
H 𝑋 = −σ𝑥∈𝑿Pr 𝑋 = 𝑥 log2 Pr 𝑋 = 𝑥
Measure of uncertainty in random variable X

• Conditional entropy

H 𝑋|𝑌 = −σ𝑥∈𝑿σ𝑦∈𝒀 Pr 𝑋 = 𝑥, 𝑌 = 𝑦 log2
Pr 𝑋=𝑥,𝑌=𝑦

Pr 𝑌=𝑦
Measure of uncertainty in X given Y

• Use base 2 so result is in the units of Shannon bits
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Quantification of Privacy Loss

20

© 2018 JV Stone

• Normal communication 
channel
• How much information can 

you convey across a noisy 
channel?

• Context Privacy
• How much noise needs to 

be added to increase 
uncertainty of observer?



Using Directed Information

Directed Information: How much information is 
conveyed from one process to another?

𝐼 𝐽0:𝑡 → 𝑌0:𝑡 =෍

𝑖=0

𝑡

𝐻 𝐽0:𝑖 𝑌0:𝑖−1 −𝐻(𝐽0:𝑖|𝑌0:𝑖)

• 𝐽0:𝑡 (rv. system state/actions)

• 𝑌0:𝑡 (rv. adversary observations)

What is needed to calculate this:

• System model: Pr(𝐽0:𝑡 = 𝑇0:𝑡)
probability of a system trace 𝑇0:𝑡

• Adversary model: Pr 𝑌0:𝑡 = 𝑂0:𝑡
probability of an adversary making obs. 𝑂0:𝑡

• Joint distribution: Pr(𝐽0:𝑡 = 𝑇0:𝑡 , 𝑌0:𝑡 = 𝑂0:𝑡)

• System Trace – Sequence of 
states and actions
𝑇0:𝑡 ≜ (𝑆0, 𝐴1, 𝑆1, … , 𝐴𝑡 , 𝑆𝑡)

• Observation Sequence
𝑂0:𝑡 ≜ (𝑂0, 𝑂1, … , 𝑂𝑡)

• Joint dist. States and Actions
𝐽0:𝑡 ≜ 𝐸0, 𝑁1, … , 𝐸𝑡 , 𝑁𝑡

• Rv. System state at time i 𝐸𝑖

• Rv. System action at time i 𝑁𝑖
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Information Gain

Self-information: surprise in observing 
outcome.

Used to quantify information gain by 
adversary when making observation

𝐼 𝑂0:𝑡 = − log2 Pr(𝑌0:𝑡 =𝑂0:𝑡)

• 𝑌0:𝑡 (rv. adversary 
observations)

• Adversary Observation 
Sequence
𝑂0:𝑡 ≜ (𝑂0, 𝑂1, … , 𝑂𝑡)

22



Example system – Last mile drone delivery
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How to obtain adversary beliefs?

System model 
(Markov chain)

Generates traces 
of states and 

actions

HMM trained on 
traces

(adversary belief)
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Challenges:
• How many traces to train on? What is the impact of varying them?
• How to handle beliefs on observations that cannot be made on this 

system?



Why a Hidden Markov Model?

• Can train on arbitrary sequence of observations
• Hidden states map to actions / states of the system

• Have a finite number of discrete hidden states and discrete observation

• Gives probability of an adversary making observations Pr 𝑌0:𝑡 = 𝑂0:𝑡

• Potential for other ML models to act as adversary belief model
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Test the quantification

• Non-sensitive system
• Drone goes to (2, 4) and 

returns to (0, 0)

• Adversary has observed and 
built a model on

• Sensitive action
• Drone goes to (4, 2) and 

returns to (0, 0)

• Adversary not previously 
observed such behaviour

26



Target is (2,4) Target is (4,2)

How much information is conveyed?

27
Adversary trained on observations going to (2,4)



Target is (2,4) Target is (4,2)

Adversary self-information
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Adversary trained on observations going to (2,4)



Manual System Transformation

• Make the sensitive action commonplace

• Instead of going directly to a target, go via a different location
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Target is (2,4) via (4,2) Target is (4,2)

How much information is conveyed 
when the system is changed?
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Adversary trained on observations going to (2,4) via (4,2)



Difference: (4,2) when trained on (2,4) and (2,4) via (4,2)

How much information is conveyed 
when the system is changed?
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Challenges

Using Directed Information

• Need to have a model of system and adversary that provide the three 
probability distributions

• Computation of Directed Information is expensive (factorial over states, 
actions and observations) – Need special cases or use estimators

• Not always easy to interpret

Using Markov chains

• Systems may not be Markovian
32
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Why not differential privacy?

• Differential Privacy (DP): Provide bounds on information release from a database

• Problem space fits tweaked information theory perspective
• Problem: System revealing information to an observing adversary

• Information theory: How much noise should be added to a communication channel to 
reduce the information conveyed?

• Harder to link problem space to DP
• What is the database?

• Cyber-physical system will change between observations

• Limits to how noise can be added to cyber-physical systems (feasibility, safety, liveness, …)

• Data manipulations techniques insufficient, action/state also need noise
33



Arbitrary System Transformation
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Process to transform system

System /
Specification

1
Model of 
system

2

Transformed 
model of 
system

3
Transformed 

System
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• Focusing on automating step 2 – get system with lower information loss
• Step 1 is reasonably automatable
• Step 3 is challenging to automate



Enforce divergence
within time limit 

• Requires that adversary does 
not observe a sensitive action 
within some time limit

• System P: does sensitive 
actions

• System S: does sensitive 
actions, but has been 
transformed to diverge from P 
for a safety period

• Jensen-Shannon Divergence:
JSD 𝑃λ‖𝑆μ = 𝐻

𝑃λ+𝑆μ

2
−

1

2
𝐻 𝑃λ + 𝐻 𝑆μ
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Solving the General Problem

• System N: does non-sensitive actions

• System S: does sensitive actions

• Problem: Transform N into N', such 
that when adversary observes S, less 
information to conveyed to an 
Adversary:
I(S → AN') < I(S → AN)

• Potential problem:
I(N' → AN') ≥ I(N → AN)

• Reminder: Assuming a new system
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System N
Transform

N’ = T(N)
System N’

Train 
Adversary 

AN’

System S

Train 
Adversary 

AN

Quantify 1
I(S → AN)

Quantify 2
I(S → AN’)

Compare

Keep 
transforming 
if Q2 ≥ Q1



Unsuccessful Attempts

Various attempts that have not worked:

• Markov Decision Processes
• Reinforcement Learning to obtain the transformed N'

• Linear Programming
• Find optimal N’, with liveness constraints that minimises privacy loss

Issue: Developing suitable reward / objective functions
• Quantification requires an adversary is trained on the system being 

generated by the technique
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In Progress Approach: Genetic Algorithm

• Allow for arbitrary fitness functions
• Including training an adversary belief model

• Convert Markov chain probability transitions to genes

• When converting back normalise to ensure valid Markov chain

• Issues:
• Very slow (due to training adversary belief on every system generated)

• Mutation can easily lead to loss of liveness

• Potential lack of freedom in drone example to find a transformation

39



Challenges

Transformation

• Need to ensure system remains live

• Transformation can be computationally expensive

• Very large systems may be hard to transform

• Encoding sufficient flexibility into the model is important
• May limit exploration of options to change actions taken by the system
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Conclusions

• Many existing context privacy solutions

• Novel systems / environments likely to need new context privacy 
techniques quickly - Existing approach to develop techniques is too slow

• Instead:

1. Solve the problem in general (Quantification, Technique Design)

2. Design domain-specific translators

3. Test translated technique in real-world environment
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Thank you for attending, any questions?
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